DESKTOP|DAYS The “Test Smarter” Approach

September 7th - 11th to Improving Product Quality
Using Automated
Code Coverage Analysis

®

~n

—

¥ froglogic

Nick Medeiros, nicholas@froglogic.com
September 10th, 2020

S(whoami) % froglogic
Nick Medeiros

® Marketing @ froglogic since 2 years
m B.S5./M.S. in Chem Eng/Computational Mech
m Boston, MA, USA

® Francophile, poetry reader, Subaru driver,
(very) amateur runner

Whatis Coco? *froglogic

|ldentifies: untested code — redundant tests — dead code

3-in-1 tool: coverage analysis + code complexity + function profiling

+ special features to

Coverage Levels

Function

Line

Statement

Decision (Branch)

Condition

MC/DC (Modified Condition/Decision Coverage)
MCC (Multiple Condition Coverage)

" froglogic

" froglogic

Instrumentation

CoverageScanneris Coco’s
backend instrumentation program

rrrrrrrrrrrrr

We must replace the compiler with
the CoverageScanner’'s wrappers

Instrumentation instructions get
inserted into the PP code, and then
this modified code is compiled

The user does not modify his/her/
their source code

Execution *froglogic

Any use of the instrumented binary
+ termination will create a second
file: .csexe.

This is the execution report.

Execution

"Any use” could be running a suite
of unit tests, or even just opening
and closing the app. CSEXE

Reporting

What is the CoverageBrowser?

®m Coco’s GUI tool, for viewing,
analyzing & managing execution
reports

m Used to browse the code coverage
results interactively

®m & Create reports, spreadsheets, ...

4 froglogic

" froglogic

Qt TextEdit App

Instrumenting a Qt App »froglogic

oL . . .
13 CodeCoverage {
1. - Define a coverage scope

Instrumenting a Qt App »froglogic

14
17 COVERAGE OPTIONS -—-cs-output=textedit _ .
18 COVERAGE OPTIONS += --cs-exclude-file-abs-wildcard=*/qrc * 2. - Customize the coverage &

19 COVERAGE OPTIONS += --cs-exclude-file-abs-wildcard=+.h exclude files from instrumentation
20

Instrumenting a Qt App »froglogic

21 QMAKE CFLAGS += $SCOVERAGE OPTIONS 3 _ Set COmp”er & Iinker ﬂags
22 QMAKE CXXFLAGS += $$SCOVERAGE OPTIONS .

23 OMAKE LFLAGS += $SCOVERAGE OPTIONS

Instrumenting a Qt App »froglogic

25 QMAKE CC=csg++

26 QMAKE CXX=cs$$QMAKE CXX 4. - Instruct qmake to use the
27 ~QMARE_LINK=CsS350MAKE LINK CoverageScanner’s compiler
28 QMAKE LINK SHLIB=cs$$QMAKE LINK SHLIB

29 QMAKE AR=cs$$QMAKE AR wrappers

30 QMAKE LIB=cs$$QMAKE LIB

31 }

32 .

Instrumenting a Qt App »froglogic

01 . . .

13 CodeCoverage {

14

17 COVERAGE OPTIONS = --cs-output=textedit

18 COVERAGE OPTIONS += --cs-exclude-file-abs-wildcard=*/qrc_ *
19 COVERAGE OPTIONS += --cs-exclude-file-abs-wildcard=*.h

20

21 OQMAKE CFLAGS += $$COVERAGE OPTIONS
22 QMAKE CXXFLAGS += $$COVERAGE OPTIONS
23 QMAKE LFLAGS += $$COVERAGE OPTIONS
24

25 QMAKE CC=csg++

26 QMAKE CXX=cs$$QMAKE CXX

27 QMAKE LINK=cs$$QMAKE LINK

28 OQMAKE LINK SHLIB=cs$$QMAKE LINK SHLIB
29 QMAKE AR=cs$$QMAKE AR

30 QMAKE LIB=cs$$QMAKE LIB

31 }

32 S gmake CONFIG+=CodeCoverage

S make

Creating the app:

Testing Strategies »froglogic

Coco supports a range of testing strategies.
Today, we'll look at:

Unit tests

Interactive tests

Automated GUI tests

" froglogic

Our first test

The Unit Test

m Both the application and the unit test
must be instrumented in the same way.

=

R O O 00 ~J o6 O & W DN K

#include "tst textedit.h”

vold TestTextEdit::tst saveFile()

1
TextEdit textEdit;

textEdit.fileName="/";
QVERIFY(! textEdit.fileSave()

QTEST MAIN(TestTextEdit);

)

00 o O WD K-

O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

4 froglogic

#include "testcoverageobject.h"
#include <QTest>

#include <QMetaObject>
#include <QString>

void TestCoverageObject::init()

{
#ifdef = COVERAGESCANNER

___coveragescanner clear();
#endif

initTest();
}
void TestCoverageObject::cleanup()

{

cleanupTest();
#1fdef @ COVERAGESCANNER
static const char *default name = "unnamed";
QString test name="unittest/";
test name+=metaObject()->className();
test name+="/";
test name+=QTest::currentTestFunction();
___coveragescanner testname(test name.toLatinl());
if (QTest::currentTestFailed())
___coveragescanner teststate("FAILED");
else
___coveragescanner teststate("PASSED") ;
___coveragescanner_ save();
___coveragescanner testname(default name);
#endif

}

Automated GUI Tests *froglogic

We’'ll use the Squish GUI Tester as our framework

" froglogic

A few Coco features

Continuous Integration »froglogic

Problem:

Increasing demand on quality with ever-shortening release cycles

Must integrate code coverage in build/test infrastructure for fast feedback
Solution: C| support in Coco: Jenkins, Bamboo, SonarQube, ...

Set coverage thresholds on build pass/fail

Supports report generation

View coverage over time

Test Case Prioritization " froglogic

Problem: Must eliminate redundancy

Solution: Schedule tests to maximize coverage efficiency

Test Impact Analysis »froglogic

Problem: Last-minute fix must be evaluated, but no time to run the full
suite

Solution: Determine which tests exercise the changed code, and run only
those

Blackbox Testing *froglogic

Problem: Distributed or outsourced QA team
Solution:
Generate blackbox database & ship instrumented builds to QA

Blackbox database shows only coverage levels, commented
executions, etc. No source code.

Developer with master access to the src collates QA’'s reports into one
master report

Learn More 4 froglogic

Coco homepage: froglogic.com/coco
Free, fully-supported & fully-featured evaluation: froglogic.com/coco/free-trial/

Online docs: doc.froglogic.com/squish-coco

Stay In Touch With Us

" froglogic

Contact support via email:

Follow us:

For developer tips, feature previews, product news & more....

Twitter: @froglogic
Facebook: /froglogic

LinkedIn: /company/froglogic
YouTube: /froglogic

" froglogic

