
Qt Quick Designer for Desktop Applications

Shantanu Tushar

shantanu.tushar@kdab.com

About Me

● Software Engineer at KDAB

● Contributor to KDE since 2009
– Mentored during Season of KDE and

Google Summer of Code

● <3 working on desktop software

Before we talk about Qt Quick Designer...

A Refresher on QML and Qt Quick

Qt Quick?

● Qt Quick is a collection of tools to create User Interfaces using
QML:
– Visual elements (Rectangle, MouseArea, Button etc)
– States, Transitions and Animations
– Model/View classes
– Particle and Graphical Effects

Key considerations

● UI “Complexity”
– Density
– Component availability (widgets etc)

● Styling
– Branding, Native look & feel
– Nature of the design team

● Availability of GPU acceleration

Apps from The Wild

Blizzard Battle.net

SoStronk esports

Ultimaker Cura – 3D Printing

Scrite - Multilingual Screenplay App

Discover – Software Center

What is involved?

Codebase structure

● QML, JS and design assets are easier with Qt’s Resource Sytem

● Data models and business logic in C++

● Share business logic across multiple UI options (form factor etc)
– common/
– desktop/
– mobile/

Managing QML Imports

● One “main” .qrc with main.qml etc

● Keep an “imports” dir with custom and 3rd party imports
– imports/

● imports/Views
● imports/Controls
● imports/3rdParty/Baz

● Each import with a .qrc and qmldir

● Use Qt’s file selectors when appropriate

Managing assets

● Use Qt’s resource system

● Automatically pick files-

RESOURCES += \

 $$files(images/*) \

 $$files(sounds/*)

Managing QML Imports (..contd)

● Use namespaces when importing
– import MyApp.media 1.0 as MyMedia
– MyMedia.Playlist {}

● Avoids collisions with other imports

● Singletons from QML
– singleton Theme 1.0 Theme.qml

UI Building Blocks in Qt Quick

● Basic elements – Item, Rectangle, MouseArea etc

● Views – ListView, GridView, PathView

● Loader, Repeater

● Qt Quick Controls 2 – Button, CheckBox, TextInput etc

● Qt Quick Layouts – GridLayout, RowLayout, ColumnLayout

Arranging UI elements

● Raw geometry
– x, y, width, height
– Not very responsive
– Easy to animate

● Anchors
– Relative positioning
– Mostly responsive
– Harder to animate

● QtQuick Layouts
– Positioning based on layout hints
– Responsive
– Very difficult to animate

Styling Qt Quick Controls 2

● Use one of the inbuilt styles (Default, Fusion, Material etc)

● Customize via code (create your own Button.qml etc)

● Provide design assets (aka Imagine style)
– Controls as images (PNG)
– Each state (pressed, checked etc) is one file
– Animations via WEBP

Qt Quick Designer

Using Qt Quick Designer

● UI design tool with live preview

● Workflow varies
– Initial layout
– Complete development with a

design team
– Previewing states

● Design file restrictions

Demo App – a simple music player

https://github.com/shaan7/qtdd2020player

https://github.com/shaan7/qtdd2020player

Components

Media Info

Current Media

Media Library Delegate

Media Library

Implementation ↔ Design

CurrentMedia.qml

CurrentMediaDesign {

 MediaPlayer {

 id: player

 }

 mediaInfo.title.text:
player.metaData.title

 mediaInfo.album.text:
player.metaData.albumTitle

}

CurrentMediaDesign.ui.qml

Item {

 property alias mediaInfo: mediaInfo

// … other UI elements …

 MediaInfo {

 id: mediaInfo

 }

// … more UI elements …

}

Implementation ↔ Design (..contd)

Demo for adding alias via Designer

User Interaction

main.qml

ApplicationWindow {

// … UI elements …

 Library {

 onMediaSelected: {

 currentMedia.mediaSource = url;

 swipeView.currentIndex = 1;

 }

 }

// … UI elements …

}

LibraryDesign.ui.qml

Item {

 id: root

 signal mediaSelected(url url)

// .. UI elements ..

 GridView {

 delegate: ItemDelegate {

 id: delegateRoot

 Connections {

 target: delegateRoot

 onClicked: root.mediaSelected(fileUrl)

 }

 }

// … UI elements ...

}

Using Designer To Preview States

● Useful to preview states that
will take more effort to test in a
running app

● States are listed at the bottom

● One set of States per QML file

● Example –>

Using Designer To Preview States (..contd)

● Example
– Second state with two

people sharing music
status

– No need to run two apps
and then invite user on
app2 from app1

More tips

● Avoid using hardcoded dimensions when developing for
desktop

● Use qtquickcontrols2.conf to configure styling

● Using test data to help previews
– Use prepopulated models to provide data to lists
– ListModel or a JavaScript Array

Qt Quick Designer Limitations

● Only single-line JS expressions allowed

● No function calls allowed (except signals)

● Unsupported – Transitions, Timer

● Quirks when using Repeater

More Tooling

QML Debugger

GammaRay

Questions?

shantanu.tushar@kdab.com

mailto:shantanu.tushar@kdab.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

