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About Me

● Software Engineer at KDAB

● Contributor to KDE since 2009
– Mentored during Season of KDE and 

Google Summer of Code

● <3 working on desktop software



Before we talk about Qt Quick Designer...

A Refresher on QML and Qt Quick



Qt Quick?

● Qt Quick is a collection of tools to create User Interfaces using 
QML:
– Visual elements (Rectangle, MouseArea, Button etc)
– States, Transitions and Animations
– Model/View classes
– Particle and Graphical Effects



Key considerations

● UI “Complexity”
– Density
– Component availability (widgets etc)

● Styling
– Branding, Native look & feel
– Nature of the design team

● Availability of GPU acceleration



Apps from The Wild



Blizzard Battle.net



SoStronk esports



Ultimaker Cura – 3D Printing



Scrite - Multilingual Screenplay App



Discover – Software Center



What is involved?



Codebase structure

● QML, JS and design assets are easier with Qt’s Resource Sytem

● Data models and business logic in C++

● Share business logic across multiple UI options (form factor etc)
– common/
– desktop/
– mobile/



Managing QML Imports

● One “main” .qrc with main.qml etc

● Keep an “imports” dir with custom and 3rd party imports
– imports/

● imports/Views
● imports/Controls
● imports/3rdParty/Baz

● Each import with a .qrc and qmldir

● Use Qt’s file selectors when appropriate



Managing assets

● Use Qt’s resource system

● Automatically pick files-

RESOURCES += \

    $$files(images/*) \

    $$files(sounds/*)



Managing QML Imports (..contd)

● Use namespaces when importing
– import MyApp.media 1.0 as MyMedia
– MyMedia.Playlist {}

● Avoids collisions with other imports

● Singletons from QML
– singleton Theme 1.0 Theme.qml



UI Building Blocks in Qt Quick

● Basic elements – Item, Rectangle, MouseArea etc

● Views – ListView, GridView, PathView

● Loader, Repeater

● Qt Quick Controls 2 – Button, CheckBox, TextInput etc

● Qt Quick Layouts – GridLayout, RowLayout, ColumnLayout



Arranging UI elements

● Raw geometry
– x, y, width, height
– Not very responsive
– Easy to animate

● Anchors
– Relative positioning
– Mostly responsive
– Harder to animate

● QtQuick Layouts
– Positioning based on layout hints
– Responsive
– Very difficult to animate



Styling Qt Quick Controls 2

● Use one of the inbuilt styles (Default, Fusion, Material etc)

● Customize via code (create your own Button.qml etc)

● Provide design assets (aka Imagine style)
– Controls as images (PNG)
– Each state (pressed, checked etc) is one file
– Animations via WEBP



Qt Quick Designer



Using Qt Quick Designer

● UI design tool with live preview

● Workflow varies
– Initial layout
– Complete development with a 

design team
– Previewing states

● Design file restrictions



Demo App – a simple music player

https://github.com/shaan7/qtdd2020player

https://github.com/shaan7/qtdd2020player


Components

Media Info

Current Media

Media Library Delegate

Media Library



Implementation ↔ Design

CurrentMedia.qml

CurrentMediaDesign {

    MediaPlayer {

        id: player

    }

    mediaInfo.title.text: 
player.metaData.title

    mediaInfo.album.text: 
player.metaData.albumTitle

}

CurrentMediaDesign.ui.qml

Item {

    property alias mediaInfo: mediaInfo

// … other UI elements …

    MediaInfo {

        id: mediaInfo

    }

// … more UI elements … 

}



Implementation ↔ Design (..contd)

Demo for adding alias via Designer



User Interaction

main.qml

ApplicationWindow {

// … UI elements …

    Library {

            onMediaSelected: {

                currentMedia.mediaSource = url;

                swipeView.currentIndex = 1;

            }

        }

// … UI elements …

}

LibraryDesign.ui.qml

Item {

    id: root

    signal mediaSelected(url url)

// .. UI elements ..

    GridView {

        delegate: ItemDelegate {

            id: delegateRoot

            Connections {

                target: delegateRoot

                onClicked: root.mediaSelected(fileUrl)

            }

        }

// … UI elements ...

}



Using Designer To Preview States

● Useful to preview states that 
will take more effort to test in a 
running app

● States are listed at the bottom

● One set of States per QML file

● Example –>



Using Designer To Preview States (..contd)

● Example
– Second state with two 

people sharing music 
status

– No need to run two apps 
and then invite user on 
app2 from app1



More tips

● Avoid using hardcoded dimensions when developing for 
desktop

● Use qtquickcontrols2.conf to configure styling

● Using test data to help previews
– Use prepopulated models to provide data to lists
– ListModel or a JavaScript Array



Qt Quick Designer Limitations

● Only single-line JS expressions allowed

● No function calls allowed (except signals)

● Unsupported – Transitions, Timer

● Quirks when using Repeater



More Tooling



QML Debugger



GammaRay



Questions?

shantanu.tushar@kdab.com

mailto:shantanu.tushar@kdab.com
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