
Layouts
with Qt
Philippe Hermite | Software Engineer

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Philippe HERMITE

Software engineer

Working at Allegorithmic/Adobe since
2016, maintaining Substance Painter

Franck ARRECOT

Software engineer

Working at KDAB for 6 years, KDE
contributor

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Introduction

Qt version: 5.12.x (LTS)

 Overall feedback:

 Why use a layout?

 Which layouts to use?

 How to correctly align different layouts?

 How to improve performance when displaying a lot of information?

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Plan

 Using layouts to align your QWidgets

 Alignment between layouts

 Layout operations

 Manipulating a lot of QWidgets

 Debugging with GammaRay

Using layouts to align your
QWidgets

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using layouts to align your QWidgets

 Layout objectives:

 Dynamic: the UI content should adapt its size

 Structured: the UI content should be easily understood by the user

 QLayout provides dynamic resizing

 Alignment may be tricky depending on the subclass of QLayout

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Project example

 Simple QMainWindow with ScrollArea

 A layout to display properties

 Each property in a row of the layout

 Name of the property

 Value of the property

 Edit button to change the property

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using a QVBoxLayout

 Each property row is represented by a
QHBoxLayout containing:

 QLabel for the property name

 QLabel for the property value

 QPushButton to edit the property value if
needed

 A QVBoxLayout stores the rows

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using a QVBoxLayout

 Alignment issue:

 Some rows contain 2 elements when the
others have 3

 By default QBoxLayout splits the width
equally creating misalignment

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using a QVBoxLayout

 Removing the button solves the
alignment

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using a QGridLayout

 QGridLayout instead of the QVBoxLayout

 For each property

 Add the property name in the first column

 Add the property value in the second column

 Add the edit button in the third column

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using a QGridLayout

 Result looks good

 Less maintainable code

 What about the edit feature ?

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Editing the property value

 When clicking on the edit button:

 An editor replaces the value label

 Clicking the edit button again commits the
new value

 The editor disappears and the value label
reappears

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Remember our QVBoxLayout...

 Each property row is represented by a
QHBoxLayout containing:

 QLabel for the property name

 QLabel for the property value

 QPushButton to edit the property value if
needed

 A QVBoxLayout stores the rows

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Display the editor: QBoxLayout

 Value and Editor sharing same sublayout

 Hide the value and show the editor on
edition

 Show the value and hide the editor on
standard display

 QHBoxLayout and QVBoxLayout are
equivalent

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Display the editor: QBoxLayout

 Flickering Issue

 Quick Video

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Display the editor: QStackedLayout

 Using GridLayout

 Properties of the QStackedLayout:

 Stack several QWidget

 Show all the widgets simultaneously or
individually

 Size of the biggest widget

 QStackedLayout are essentially used for
tabs management

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Layouts to align widgets: Conclusion

To align correctly your UI:
 QGridLayout are often more reliable than QBoxLayout
 Don’t overuse QGridLayout since it is more complex to maintain

Hiding widgets with layouts can lead to flickering issues
 QStackedLayout can be used to avoid these issues
 Don’t overuse QStackedLayout for performance issues
 Using a stretch can reduce the flickering

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Layouts to align widgets: Benchmarking

Using Qt5.12 Release with 20 runs to average out

100 rows Without editor Editor in QBoxLayout Editor in QStackedLayout

QBoxLayouts ≈ 93 ms ≈ 96 ms ≈ 105 ms

QGridLayout ≈ 88 ms ≈ 91 ms ≈ 930 ms

10 rows Without editor Editor in QBoxLayout Editor in QStackedLayout

QBoxLayouts ≈ 69 ms ≈ 73 ms ≈ 80 ms

QGridLayout ≈ 58 ms ≈ 66 ms ≈ 151 ms

Alignment between layouts

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Project example

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Alignment between layouts

 Layouts cannot share their alignments

 Example of a new feature:

 With our previous example, we had a header at the top of the layout

 Scrolling will hide the header

 Separating the header from the QScrollArea allows us to always display it

 How to correctly align the header layout with the content of the QScrollArea?

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using hard-coded values

 Most of the time, setting a default minimum size of a QWidget solves the issue

 In our example, it is difficult to define such a value

 The content of the QGridLayout is generated dynamically

 Alignment may be broken if the minimum size is not large enough

 It may crop the display of the QWidget

 Hard-coded values should be easily retrieved and changed

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using hard-coded value after first resize

 The alignment can be fixed after the dynamic layout has determined its size

 If no widgets are added or removed afterwards, this is safe

 In the other case, this is not safe and alignment issues can appear during runtime

 Layouts do not send any signals to help us

 Reset the value each time we add or remove a widget from the layout?

 Reset the value each time we resize the layout?

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Alignment between layouts: Conclusion

No ideal solution for this issue, sometimes hard-coded values may be preferable to avoid
overly complicated code

Trying to determine at runtime the ideal size is not simple

 What can impact the size of a layout section?

 Can we check that the layout section has the right size?

 …

Layout operations

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Layout operations

 Some layout operations can take a lot of time

 When inserting a new widget:

 Avoid inserting too many widgets at the same time

 If possible try to dispatch the insertion in several steps

 When removing a widget

 Removing a lot of widgets at the same time can be a bottleneck

 Disabling the layout before doing such operation is a good way to avoid performance issues

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

What about QFormLayout

 QFormLayout has a suitable api for our use case

 More reliable than QGridLayout for code maintenance

 Hiding the content of a QFormLayout can lead to a spacing issue

 Specific to QFormLayout

Manipulating a lot of
QWidgets

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Laying out without layouts

 Some QWidgets are designed specifically to display a lot of information instantly

 This is the case of QListView, QTreeView or QTableView

 They use a QAbstractItemModel as an entry point

 They manage their own layout depending on the model

 They don’t create any widgets but draw each cells manually

 In our sample project, which of these views should we use?

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Item views

 Creating your model

 Built-in models: QStandardItemModel

 Inherits from QAbstractItemModel or a more derived class

 All models are compatible with all ItemViews

 In our case:

 Each row have 2 columns

 Rows don’t have any children

 Let’s see QStandardItemModel + QTableView

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using a QTableView

 Proper alignment

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using a QTableView

 One issue with QTableView:

 Cells do not expand to take all the available space by default

 Can be changed by using the QHeaderView api

 Replacing QTableView by a QTreeView

 QTreeView expands to take all the available space by default

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using a QTableView

 Display editor

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Manipulating a lot of QWidgets: Benchmarking

Layout creation times:

Additional display on QTreeview can be nullified if uniformRowHeights is true

1 000 rows 10 000 rows 100 000 rows

QGridLayout ≈ 258 ms ≈ 1905 ms ≈ 18.5 s

QTableView ≈ 74 ms ≈ 85 ms ≈ 208 ms

QTreeView ≈ 53 ms ≈ 65 ms + 1 s (display) ≈ 184 ms + 6 s (display)

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Manipulating a lot of QWidgets: Conclusion

Layouts are not the ideal solution when displaying a lot of QWidgets

 Performances can be a real issue

 Using item views solves that and keeps the proper alignment of your UI

But...Customizing an item view can be difficult :

 Creating a complex model may require some more code

 It is not easy to modify the behavior of these views

Introducing Gammaray

Franck Arrecot

franck.arrecot@kdab.com https://github.com/KDAB/GammaRay

Introducing GammarayIntroducing GammarayIntroducing Gammaray

Thank you for your attention.

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39

