
Layouts
with Qt
Philippe Hermite | Software Engineer

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Philippe HERMITE

Software engineer

Working at Allegorithmic/Adobe since
2016, maintaining Substance Painter

Franck ARRECOT

Software engineer

Working at KDAB for 6 years, KDE
contributor

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Introduction

Qt version: 5.12.x (LTS)

 Overall feedback:

 Why use a layout?

 Which layouts to use?

 How to correctly align different layouts?

 How to improve performance when displaying a lot of information?

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Plan

 Using layouts to align your QWidgets

 Alignment between layouts

 Layout operations

 Manipulating a lot of QWidgets

 Debugging with GammaRay

Using layouts to align your
QWidgets

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using layouts to align your QWidgets

 Layout objectives:

 Dynamic: the UI content should adapt its size

 Structured: the UI content should be easily understood by the user

 QLayout provides dynamic resizing

 Alignment may be tricky depending on the subclass of QLayout

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Project example

 Simple QMainWindow with ScrollArea

 A layout to display properties

 Each property in a row of the layout

 Name of the property

 Value of the property

 Edit button to change the property

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using a QVBoxLayout

 Each property row is represented by a
QHBoxLayout containing:

 QLabel for the property name

 QLabel for the property value

 QPushButton to edit the property value if
needed

 A QVBoxLayout stores the rows

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using a QVBoxLayout

 Alignment issue:

 Some rows contain 2 elements when the
others have 3

 By default QBoxLayout splits the width
equally creating misalignment

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using a QVBoxLayout

 Removing the button solves the
alignment

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using a QGridLayout

 QGridLayout instead of the QVBoxLayout

 For each property

 Add the property name in the first column

 Add the property value in the second column

 Add the edit button in the third column

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using a QGridLayout

 Result looks good

 Less maintainable code

 What about the edit feature ?

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Editing the property value

 When clicking on the edit button:

 An editor replaces the value label

 Clicking the edit button again commits the
new value

 The editor disappears and the value label
reappears

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Remember our QVBoxLayout...

 Each property row is represented by a
QHBoxLayout containing:

 QLabel for the property name

 QLabel for the property value

 QPushButton to edit the property value if
needed

 A QVBoxLayout stores the rows

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Display the editor: QBoxLayout

 Value and Editor sharing same sublayout

 Hide the value and show the editor on
edition

 Show the value and hide the editor on
standard display

 QHBoxLayout and QVBoxLayout are
equivalent

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Display the editor: QBoxLayout

 Flickering Issue

 Quick Video

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Display the editor: QStackedLayout

 Using GridLayout

 Properties of the QStackedLayout:

 Stack several QWidget

 Show all the widgets simultaneously or
individually

 Size of the biggest widget

 QStackedLayout are essentially used for
tabs management

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Layouts to align widgets: Conclusion

To align correctly your UI:
 QGridLayout are often more reliable than QBoxLayout
 Don’t overuse QGridLayout since it is more complex to maintain

Hiding widgets with layouts can lead to flickering issues
 QStackedLayout can be used to avoid these issues
 Don’t overuse QStackedLayout for performance issues
 Using a stretch can reduce the flickering

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Layouts to align widgets: Benchmarking

Using Qt5.12 Release with 20 runs to average out

100 rows Without editor Editor in QBoxLayout Editor in QStackedLayout

QBoxLayouts ≈ 93 ms ≈ 96 ms ≈ 105 ms

QGridLayout ≈ 88 ms ≈ 91 ms ≈ 930 ms

10 rows Without editor Editor in QBoxLayout Editor in QStackedLayout

QBoxLayouts ≈ 69 ms ≈ 73 ms ≈ 80 ms

QGridLayout ≈ 58 ms ≈ 66 ms ≈ 151 ms

Alignment between layouts

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Project example

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Alignment between layouts

 Layouts cannot share their alignments

 Example of a new feature:

 With our previous example, we had a header at the top of the layout

 Scrolling will hide the header

 Separating the header from the QScrollArea allows us to always display it

 How to correctly align the header layout with the content of the QScrollArea?

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using hard-coded values

 Most of the time, setting a default minimum size of a QWidget solves the issue

 In our example, it is difficult to define such a value

 The content of the QGridLayout is generated dynamically

 Alignment may be broken if the minimum size is not large enough

 It may crop the display of the QWidget

 Hard-coded values should be easily retrieved and changed

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using hard-coded value after first resize

 The alignment can be fixed after the dynamic layout has determined its size

 If no widgets are added or removed afterwards, this is safe

 In the other case, this is not safe and alignment issues can appear during runtime

 Layouts do not send any signals to help us

 Reset the value each time we add or remove a widget from the layout?

 Reset the value each time we resize the layout?

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Alignment between layouts: Conclusion

No ideal solution for this issue, sometimes hard-coded values may be preferable to avoid
overly complicated code

Trying to determine at runtime the ideal size is not simple

 What can impact the size of a layout section?

 Can we check that the layout section has the right size?

 …

Layout operations

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Layout operations

 Some layout operations can take a lot of time

 When inserting a new widget:

 Avoid inserting too many widgets at the same time

 If possible try to dispatch the insertion in several steps

 When removing a widget

 Removing a lot of widgets at the same time can be a bottleneck

 Disabling the layout before doing such operation is a good way to avoid performance issues

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

What about QFormLayout

 QFormLayout has a suitable api for our use case

 More reliable than QGridLayout for code maintenance

 Hiding the content of a QFormLayout can lead to a spacing issue

 Specific to QFormLayout

Manipulating a lot of
QWidgets

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Laying out without layouts

 Some QWidgets are designed specifically to display a lot of information instantly

 This is the case of QListView, QTreeView or QTableView

 They use a QAbstractItemModel as an entry point

 They manage their own layout depending on the model

 They don’t create any widgets but draw each cells manually

 In our sample project, which of these views should we use?

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Item views

 Creating your model

 Built-in models: QStandardItemModel

 Inherits from QAbstractItemModel or a more derived class

 All models are compatible with all ItemViews

 In our case:

 Each row have 2 columns

 Rows don’t have any children

 Let’s see QStandardItemModel + QTableView

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using a QTableView

 Proper alignment

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using a QTableView

 One issue with QTableView:

 Cells do not expand to take all the available space by default

 Can be changed by using the QHeaderView api

 Replacing QTableView by a QTreeView

 QTreeView expands to take all the available space by default

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Using a QTableView

 Display editor

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Manipulating a lot of QWidgets: Benchmarking

Layout creation times:

Additional display on QTreeview can be nullified if uniformRowHeights is true

1 000 rows 10 000 rows 100 000 rows

QGridLayout ≈ 258 ms ≈ 1905 ms ≈ 18.5 s

QTableView ≈ 74 ms ≈ 85 ms ≈ 208 ms

QTreeView ≈ 53 ms ≈ 65 ms + 1 s (display) ≈ 184 ms + 6 s (display)

©2020 Adobe. All Rights Reserved. Adobe
Confidential.

Manipulating a lot of QWidgets: Conclusion

Layouts are not the ideal solution when displaying a lot of QWidgets

 Performances can be a real issue

 Using item views solves that and keeps the proper alignment of your UI

But...Customizing an item view can be difficult :

 Creating a complex model may require some more code

 It is not easy to modify the behavior of these views

Introducing Gammaray

Franck Arrecot

franck.arrecot@kdab.com https://github.com/KDAB/GammaRay

Introducing GammarayIntroducing GammarayIntroducing Gammaray

Thank you for your attention.

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39

