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Introduction

Qt version: 5.12.x (LTS)

 Overall feedback:

 Why use a layout?

 Which layouts to use?

 How to correctly align different layouts?

 How to improve performance when displaying a lot of information?
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Plan

 Using layouts to align your QWidgets

 Alignment between layouts

 Layout operations

 Manipulating a lot of QWidgets

 Debugging with GammaRay



Using layouts to align your 
QWidgets



©2020 Adobe. All Rights Reserved. Adobe 
Confidential.

Using layouts to align your QWidgets

 Layout objectives:

 Dynamic: the UI content should adapt its size

 Structured: the UI content should be easily understood by the user

 QLayout provides dynamic resizing

 Alignment may be tricky depending on the subclass of QLayout
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Project example

 Simple QMainWindow with ScrollArea 

 A layout to display properties

 Each property in a row of the layout 

 Name of the property

 Value of the property

 Edit button to change the property
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Using a QVBoxLayout

 Each property row is represented by a 
QHBoxLayout containing:

 QLabel for the property name 

 QLabel for the property value

 QPushButton to edit the property value if 
needed

 A QVBoxLayout stores the rows
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Using a QVBoxLayout

 Alignment issue: 

 Some rows contain 2 elements when the 
others have 3

 By default QBoxLayout splits the width 
equally creating misalignment
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Using a QVBoxLayout

 Removing the button solves the 
alignment



©2020 Adobe. All Rights Reserved. Adobe 
Confidential.

Using a QGridLayout

 QGridLayout instead of the QVBoxLayout

 For each property

 Add the property name in the first column

 Add the property value in the second column 

 Add the edit button in the third column 
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Using a QGridLayout

 Result looks good

 Less maintainable code 

 What about the edit feature ?
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Editing the property value

 When clicking on the edit button:

 An editor replaces the value label

 Clicking the edit button again commits the 
new value

 The editor disappears and the value label 
reappears
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Remember our QVBoxLayout...

 Each property row is represented by a 
QHBoxLayout containing:

 QLabel for the property name

 QLabel for the property value

 QPushButton to edit the property value if 
needed

 A QVBoxLayout stores the rows
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Display the editor: QBoxLayout

 Value and Editor sharing same sublayout

 Hide the value and show the editor on 
edition

 Show the value and hide the editor on 
standard display

 QHBoxLayout and QVBoxLayout are 
equivalent
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Display the editor: QBoxLayout

 Flickering Issue

 Quick Video
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Display the editor: QStackedLayout

 Using GridLayout

 Properties of the QStackedLayout:

 Stack several QWidget

 Show all the widgets simultaneously or 
individually

 Size of the biggest widget

 QStackedLayout are essentially used for 
tabs management
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Layouts to align widgets: Conclusion

To align correctly your UI:
 QGridLayout are often more reliable than QBoxLayout
 Don’t overuse QGridLayout since it is more complex to maintain

Hiding widgets with layouts can lead to flickering issues
 QStackedLayout can be used to avoid these issues
 Don’t overuse QStackedLayout for performance issues
 Using a stretch can reduce the flickering
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Layouts to align widgets: Benchmarking

Using Qt5.12 Release with 20 runs to average out

100 rows Without editor Editor in QBoxLayout Editor in QStackedLayout

QBoxLayouts ≈ 93 ms ≈ 96 ms ≈ 105 ms

QGridLayout ≈ 88 ms ≈ 91 ms ≈ 930 ms

10 rows Without editor Editor in QBoxLayout Editor in QStackedLayout

QBoxLayouts ≈ 69 ms ≈ 73 ms ≈ 80 ms

QGridLayout ≈ 58 ms ≈ 66 ms ≈ 151 ms



Alignment between layouts
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Project example
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Alignment between layouts

 Layouts cannot share their alignments

 Example of a new feature:

 With our previous example, we had a header at the top of the layout

 Scrolling will hide the header

 Separating the header from the QScrollArea allows us to always display it

 How to correctly align the header layout with the content of the QScrollArea?
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Using hard-coded values

 Most of the time, setting a default minimum size of a QWidget solves the issue

 In our example, it is difficult to define such a value

 The content of the QGridLayout is generated dynamically

 Alignment may be broken if the minimum size is not large enough

 It may crop the display of the QWidget

 Hard-coded values should be easily retrieved and changed
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Using hard-coded value after first resize

 The alignment can be fixed after the dynamic layout has determined its size

 If no widgets are added or removed afterwards, this is safe

 In the other case, this is not safe and alignment issues can appear during runtime

 Layouts do not send any signals to help us

 Reset the value each time we add or remove a widget from the layout?

 Reset the value each time we resize the layout?
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Alignment between layouts: Conclusion

No ideal solution for this issue, sometimes hard-coded values may be preferable to avoid 
overly complicated code

Trying to determine at runtime the ideal size is not simple

 What can impact the size of a layout section?

 Can we check that the layout section has the right size?

 …



Layout operations
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Layout operations

 Some layout operations can take a lot of time

 When inserting a new widget:

 Avoid inserting too many widgets at the same time

 If possible try to dispatch the insertion in several steps

 When removing a widget

 Removing a lot of widgets at the same time can be a bottleneck

 Disabling the layout before doing such operation is a good way to avoid performance issues
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What about QFormLayout

 QFormLayout has a suitable api for our use case

 More reliable than QGridLayout for code maintenance

 Hiding the content of a QFormLayout can lead to a spacing issue

 Specific to QFormLayout



Manipulating a lot of 
QWidgets
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Laying out without layouts

 Some QWidgets are designed specifically to display a lot of information instantly

 This is the case of QListView, QTreeView or QTableView

 They use a QAbstractItemModel as an entry point

 They manage their own layout depending on the model

 They don’t create any widgets but draw each cells manually

 In our sample project, which of these views should we use?
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Item views

 Creating your model

 Built-in models: QStandardItemModel

 Inherits from QAbstractItemModel or a more derived class

 All models are compatible with all ItemViews

 In our case: 

 Each row have 2 columns

 Rows don’t have any children

 Let’s see QStandardItemModel + QTableView 
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Using a QTableView 

 Proper alignment
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Using a QTableView

 One issue with QTableView:

 Cells do not expand to take all the available space by default

 Can be changed by using the QHeaderView api

 Replacing QTableView by a QTreeView

 QTreeView expands to take all the available space by default
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Using a QTableView 

 Display editor
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Manipulating a lot of QWidgets: Benchmarking

Layout creation times:

Additional display on QTreeview can be nullified if uniformRowHeights is true

1 000 rows 10 000 rows 100 000 rows

QGridLayout ≈ 258 ms ≈ 1905 ms ≈ 18.5 s

QTableView ≈ 74 ms ≈ 85 ms ≈ 208 ms

QTreeView ≈ 53 ms ≈ 65 ms + 1 s (display) ≈ 184 ms + 6 s (display)
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Manipulating a lot of QWidgets: Conclusion

Layouts are not the ideal solution when displaying a lot of QWidgets

 Performances can be a real issue

 Using item views solves that and keeps the proper alignment of your UI

But...Customizing an item view can be difficult :

 Creating a complex model may require some more code

 It is not easy to modify the behavior of these views





Introducing Gammaray

Franck Arrecot

franck.arrecot@kdab.com https://github.com/KDAB/GammaRay

Introducing GammarayIntroducing GammarayIntroducing Gammaray



Thank you for your attention.
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