
08/09/2020

Romain Pokrzywka – Native Application Architect

Touch-and-pen-proof Qt applications 

From desk to wall… and back



Overview

1. Touch and pen input support in Qt

2. Mixed input applications

3. Tips & tricks

4. Input stack changes in Qt6



Touch and Pen input support in Qt



case QEvent::TouchBegin:

case QEvent::TouchUpdate:

case QEvent::TouchEnd:

case QEvent::TouchCancel:

for (const QTouchEvent::TouchPoint& touchPoint : te->touchpoints())

qDebug() << touchPoint.id() << touchPoint.pos() << touchPoint.state();

Qt::TouchPointPressed

Qt::TouchPointMoved

Qt::TouchPointStationary

Qt::TouchPointReleased

Multi-Touch support (C++)

QWindow::touchEvent(QTouchEvent*)
QWidget::event(QEvent*)



case QEvent::TabletPress:

case QEvent::TabletMove:

case QEvent::TabletRelease:

case QEvent::TabletEnterProximity:

case QEvent::TabletLeaveProximity:

qDebug() << te->uniqueId() << te->pos() << te->device() << te->pointerType();

QTabletEvent::Pen

QTabletEvent::Eraser

QTabletEvent::Cursor

Pen support (C++)

QWindow::tabletEvent(QTabletEvent*)
QWidget::event(QEvent*)



MultiPointTouchArea {

anchors.fill: parent

minimumTouchPoints: 1

maximumTouchPoints: 2

onTouchUpdated: {

console.log(touchPoints.length)

}

}

Multi-Touch support (QML)

Area Item API



Multi-Touch support (QML)

DragHandler {

target: anotherItem // default is parent

}

Text {

id: text

text: handler.translation.x + " " + (handler.scale * 100) + "%; deg=" + handler.rotation

PinchHandler {

id: handler

target: null // to only use the handler properties

}

}

Pointer handlers (Qt 5.10+)



TapHandler

WheelHandler

HoverHandler

PointHandler

Pen/Touchpad support (QML)

Additional pointer handlers (Qt 5.10+)



Qt::AA_SynthesizeMouseForUnhandledTouchEvents (default true)

Qt::AA_SynthesizeMouseForUnhandledTabletEvents (default true)

Qt::AA_SynthesizeTouchForUnhandledMouseEvents (default false)

Other useful flags/options

QGuiApplication

Qt::WA_AcceptTouchEvents

QWidget

nomousefromtouch

Windows Platform (QPA)



QScroller::grabGesture(scrollAreaWidget, QScroller::TouchGesture);

QScroller::scroller(textEdit)->scrollTo(QPointF(0, 100));

QScroller::scroller(textEdit)->ensureVisible(QRectF(0, 100, 200, 200), 0, 0);

QScroller

Off-the-shelf flick support for scrollable widgets

… but grabGesture(TouchGesture) should be avoided 
due to non-standard behavior!



Mixed input applications



Native app

(Windows/Linux/Mac)

Web browser Mobile

Bluescape: A visual collaboration platform



- Touchpad as alternate mouse with 2D wheel scrolling

- Touch/Pen optional, with default as mouse cursor (single-touch only)

Mixed input strategies

Mouse + Keyboard as primary input

- Mouse as single finger, wheel as two-finger gestures (w/ keyboard modifiers)

- Touchpad as one-finger and two-finger gestures

- Pen as extra tool and/or as single finger

Finger + Pen as primary input



- Sometimes used for zooming, sometimes for scrolling

- Most mice only support 1D scrolling

- Scrolling often implemented as mouse press+drag, but can conflict with content interactions

Caveat: Mouse wheel support

Mouse wheel behavior is inconsistent

- One-finger gestures map to the mouse cursor: move, press, release

- Two-finger gestures map to the mouse wheel: pan for 2D scrolling, pinch-zoom for zooming 

(w/ Ctrl keyboard modifier)

- Consistent on all OSes, and closely matches touchscreen behavior

Touchpads behavior is consistent 



- Map the mouse wheel to scrolling, following the touchpad scrolling direction

- Use the Shift key modifier to switch scrolling direction (if applicable)

- Use the Ctrl key modifier to map the wheel to zooming (if applicable)

Caveat: Mouse wheel support

Recommendation:

→ Keeps consistency with touchpad and finger/pen gestures

If a different wheel behavior is desired, give the user an option



Tips & tricks



- But careful about OS-generated mouse events if you need to handle both on a same window/widget!

Tips & tricks

Pens make great mice too

- Easy with MouseArea, even easier with the new Pointer Handlers margin property

Use extended tap/click areas for small QML items

- Not as flexible as margins, but a simple way to adjust the UI to a touch screen

Use custom style/stylesheet for small widgets



Qt6 Input API changes



- C++ equivalent to the QML Pointer handlers (and same underlying events)

Qt6 Input API changes

New QPointerEvent base class

- Not limited to touch events anymore

- Proper multiple-device support and assignment in events

QTouchDevice replaced with QPointingDevice

Event delivery cleanup



Qt6 Input events



- Demo source code on github:

https://github.com/kromain/qtdesktopdays2020

- Q&A

Thank you!

https://github.com/kromain/qtdesktopdays2020

