
What’s new in Qt 6 on the desktop?

Qt Desktop Days 2020

Giuseppe D’Angelo

giuseppe.dangelo@kdab.com

 2

About me
● Senior Software Engineer,

KDAB
● Developer & Trainer
● Qt Approver
● Ask me about QtCore, QtGui,

QtQuick, ...
– And also about Modern C++,

3D graphics

The Road to Qt 6

 4

Why Qt 6?
● Do architectural changes that simply cannot be done in Qt 5
● Binary compatibility break

– Applications must be recompiled
● Re-engineer features
● But also do some necessary housecleaning, drop ballast

 5

Design Goals
● Keep as much (source) compatibility with Qt 5 as possible
● Add property bindings in C++
● Improve QML & language bindings

– Reduce overhead, increase type safety, compile to C++
● Tackle the changing landscape in 3D APIs
● Modularize Qt even more

 6

Keep the Good Parts!
● Easy to use APIs
● General purpose, cross platform application framework
● Make 90% easy to achieve, and 99.9% possible
● Excellent developer support, documentation, tooling
● Nurture the ecosystem around Qt

 7

Looking ahead
● Qt 4: released 2005, EOL 2015

– ~30 modules
● Qt 5: released 2012, EOL 2023

– ~50 modules
● Qt 6: released 2020, EOL 20??
● How to plan for the next decade?

 8

Technical foundations
● C++17

– MSVC 2019, GCC 8, Apple Clang
● CMake buildsystem for Qt

– qmake still supported for end user applications
● 3D API abstraction (Qt RHI)

 9

Release Plan

September 2020 October 2020 November 2020 December 2020

Alpha Beta Release Candidate Qt 6.0 Final Release

● Qt 6.0 feature freeze reached
● Binary weekly snapshots (already) available via the installer
● Reduced set of modules available for 6.0 release

– More coming back in 6.1/6.2, or via the Marketplace

Qt Core

 11

Property bindings in C++
● The defining feature of QML, available in C++
● Make properties depend on other properties without manually

writing slots and setting up connections

Mandatory note: actual syntax / feature set still evolving

 12

Property bindings in C++
● The defining feature of QML, available in C++
● Make properties depend on other properties without manually

writing slots and setting up connections

Mandatory note: actual syntax / feature set still evolving

 13

Property bindings in C++
● The defining feature of QML, available in C++
● Make properties depend on other properties without manually

writing slots and setting up connections

Mandatory note: actual syntax / feature set still evolving

okButton->enabled = Qt::makePropertyBinding(

 [&](){ return offerEdit->value > currentOffer
 && acceptBox->isChecked; }

);

 14

Qt container refactorings
● Support more than 2G elements

– Index type is qsizetype
● Cleanups:

– QList == QVector
– QMap / QHash are single valued

● QMultiMap / QMultiHash no longer inherit from QMap / QHash
– New QHash, QMap, QPair, QVector implementations
– QLinkedList dropped

 15

String processing & I18N
● More flexibility in Qt string / byte array APIs

– QStringView , QByteArrayView
– QAnyStringView: views over UTF-8 / UTF-16 data
– QStringTokenizer: non allocating string splitter
– QStringRef / QRegExp superseded by QStringView / QRegularExpression

● Source code is UTF-8
● Support for Unicode 12, CLDR 36
● QtCore classes can now only deal with Unicode encodings

– For other encodings: QTextCodec in Qt5Compat

Qt Widgets

 17

Widgets
● No new widget class has been added to Qt since 4.x!

What’s going on?

 18

Widgets: focus on stability
● Widgets are essentially frozen

– Focus on long term stability, bugfixing, small API improvements
● Entry barrier for new features (esp. new widgets!) extremely high
● Qt Marketplace, KDE Frameworks, etc. offer many extra goodies
● Contributions welcome!

KColorCombo KDDockWidgets PhantomStyle

 19

Still: keep up with new platform trends
● High-DPI in hybrid screen configurations must ”just work”

– Incl. fractional factors
– May require usage of non-native styles

● New native styles, easier theming
– E.g. dark mode / themes support on all OSes

● Handle hybrid input systems
– Mouse + Stylus + Touch + Voice + Virtual Keyboard + CIM + Eye + …

● Accelerate widget rendering & compositing through RHI
– And/or platform native APIs

QML and Qt Quick

 21

QML: new features in Qt 5.15
● required properties
● Inline components
● Registration of classes and

objects from C++ to QML at
build time
– Enables checks on usage points
– Improves tooling
– qmake only in Qt 5.15, CMake

support in Qt 6

 22

Towards a better QML
● QML 2 has had a great run
● Still lots of room for improvement for big-scale (desktop) applications
● Lessons learned from QML 2:

– Precompile as much as possible
– JavaScript is fun, until it isn’t
– More build system / tooling support
– Do more static analysis

 23

Coming soon (6.1/6.2): QML 3
● JavaScript engine optional
● More static typing
● QML compiled to C++ code

– By exploiting the new property system, new meta object, etc.

 24

Qt Quick
● API of elements is mostly unchanged
● Unified 2D/3D scenegraph

– Tighter integration for 3D content
● Rendering happens exclusively through RHI

– Targeting OpenGL (ES), Direct3D, Vulkan, Metal
– Software rendering still available
– Desktop applications mixing raw 3D and Qt Quick possibly affected

● Planned in Qt 6.x: C++ API for Qt Quick elements

 25

Qt Quick Controls 2: Native Desktop Style
● Not every Qt Quick application

wants a custom look and feel
● In Qt 6.0: native desktop style

for Qt Quick Controls 2

3D Graphics

 27

Qt and 3D graphics: a bit of history
● OpenGL, OpenGL, OpenGL

– As a cross-platform toolkit, Qt has always had deep OpenGL integration
– OpenGL widgets, QOpenGLContext, OpenGL helper classes, etc.

● Qt 5 bet on OpenGL (ES) as the universal enabler API for 3D
– OpenGL first-class citizen in Qt APIs
– QtGui featuring OpenGL classes
– QtWidgets for OpenGL content
– Qt Quick uses OpenGL for rendering

Qt Gui

Qt Widgets Qt Quick

OpenGL helpers

Qt 3D

 28

3D graphics today
● The OpenGL bet didn’t quite pay off
● Today’s world: multiple competing 3D standards

– OpenGL
– Vulkan
– Metal
– Direct3D

● Some support for Vulkan and Metal already available in Qt 5

 29

Qt 6 strategy for 3D graphics
● Move everything but the core

3D classes out of QtGui, into
their own libraries
– Lots of OpenGL goodies still

available
● Introduce RHI as foundational

3D API for Qt itself
– Qt Quick, Qt 3D, etc. using it in 6.0

Qt Gui

OpenGLVulkan MetalD3D

Qt Rendering Hardware Interface

Qt WidgetsQt Quick QtOpenGL
Helpers

Qt OpenGL Widgets

Qt 3D

 30

3D: summary
● Qt RHI initially (mostly) private API, for Qt’s own libraries

– Qt Quick, Qt Quick 3D, Qt 3D, etc.
● OpenGL enablers and higher-level classes are still available to

applications
– Some simply got moved; minor changes required

● New: low-level enablers for other 3D APIs, available in Qt Gui
● Application mixing raw 3D with Qt-rendered 3D may need some

changes

How to upgrade to Qt 6?

 32

The way towards Qt 6
● Recognize the success of Qt 5

– Qt 5.15 has Long Term Support (3 years)
● Minimize disruptions for end-users towards Qt 6
● Not every Qt 5 module will be ready for 6.0

– Notable desktop-related modules missing:
QtWebEngine, QtVirtualKeyboard, QtMultimedia

– Some of those may move to the Marketplace

 33

Planning the upgrade
● Upgrade your software to Qt 5.15 LTS
● Upgrade your toolchain
● Enable the deprecation warnings in Qt, fix them all
● Use docs, changelogs, etc. to identify pain areas (“Important Behavior

Changes”)
– Have a plan to address them before getting your hands dirty

 34

Migrate, not upgrade
● Upgrading towards Qt 6 is still a migration

– Therefore: avoid adding features, doing refactorings, etc. while porting
– If needed, port to Qt 5.15 features before porting to Qt 6

● In theory, have enough #ifdefs and/or build system support to
keep your code work on both 5.15 and 6.x

● Some unsupported features moved to Qt5Compat module
– Use it (temporarily!) to ease the transition

Thank you!
Questions?

	Slide 1
	Slide 2
	Section slide
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

