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About me
● Senior Software Engineer,

KDAB
● Developer & Trainer
● Qt Approver
● Ask me about QtCore, QtGui, 

QtQuick, ...
– And also about Modern C++,

3D graphics



The Road to Qt 6
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Why Qt 6?
● Do architectural changes that simply cannot be done in Qt 5
● Binary compatibility break

– Applications must be recompiled
● Re-engineer features
● But also do some necessary housecleaning, drop ballast
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Design Goals
● Keep as much (source) compatibility with Qt 5 as possible
● Add property bindings in C++
● Improve QML & language bindings

– Reduce overhead, increase type safety, compile to C++
● Tackle the changing landscape in 3D APIs
● Modularize Qt even more



 6

Keep the Good Parts!
● Easy to use APIs
● General purpose, cross platform application framework
● Make 90% easy to achieve, and 99.9% possible
● Excellent developer support, documentation, tooling
● Nurture the ecosystem around Qt
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Looking ahead
● Qt 4: released 2005, EOL 2015

– ~30 modules
● Qt 5: released 2012, EOL 2023

– ~50 modules
● Qt 6: released 2020, EOL 20??
● How to plan for the next decade?
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Technical foundations
● C++17

– MSVC 2019, GCC 8, Apple Clang
● CMake buildsystem for Qt

– qmake still supported for end user applications
● 3D API abstraction (Qt RHI)
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Release Plan

September 2020 October 2020 November 2020 December 2020

Alpha Beta Release Candidate Qt 6.0 Final Release

● Qt 6.0 feature freeze reached
● Binary weekly snapshots (already) available via the installer
● Reduced set of modules available for 6.0 release

– More coming back in 6.1/6.2, or via the Marketplace



Qt Core
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Property bindings in C++
● The defining feature of QML, available in C++
● Make properties depend on other properties without manually 

writing slots and setting up connections

Mandatory note: actual syntax / feature set still evolving
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Property bindings in C++
● The defining feature of QML, available in C++
● Make properties depend on other properties without manually 

writing slots and setting up connections

Mandatory note: actual syntax / feature set still evolving

okButton->enabled = Qt::makePropertyBinding( 

  [&](){ return offerEdit->value > currentOffer 
                && acceptBox->isChecked; } 

);
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Qt container refactorings
● Support more than 2G elements

– Index type is qsizetype
● Cleanups:

– QList == QVector
– QMap / QHash are single valued

● QMultiMap / QMultiHash no longer inherit from QMap / QHash
– New QHash, QMap, QPair, QVector implementations
– QLinkedList dropped
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String processing & I18N
● More flexibility in Qt string / byte array APIs 

– QStringView , QByteArrayView
– QAnyStringView: views over UTF-8 / UTF-16 data
– QStringTokenizer: non allocating string splitter
– QStringRef / QRegExp superseded by QStringView / QRegularExpression

● Source code is UTF-8
● Support for Unicode 12, CLDR 36
● QtCore classes can now only deal with Unicode encodings

– For other encodings: QTextCodec in Qt5Compat



Qt Widgets



 17

Widgets
● No new widget class has been added to Qt since 4.x! 

What’s going on?
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Widgets: focus on stability
● Widgets are essentially frozen

– Focus on long term stability, bugfixing, small API improvements
● Entry barrier for new features (esp. new widgets!) extremely high
● Qt Marketplace, KDE Frameworks, etc. offer many extra goodies
● Contributions welcome!

KColorCombo KDDockWidgets PhantomStyle
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Still: keep up with new platform trends
● High-DPI in hybrid screen configurations must ”just work”

– Incl. fractional factors
– May require usage of non-native styles

● New native styles, easier theming
– E.g. dark mode / themes support on all OSes

● Handle hybrid input systems
– Mouse + Stylus + Touch + Voice + Virtual Keyboard + CIM + Eye + …

● Accelerate widget rendering & compositing through RHI 
– And/or platform native APIs



QML and Qt Quick
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QML: new features in Qt 5.15
● required properties
● Inline components
● Registration of classes and 

objects from C++ to QML at 
build time
– Enables checks on usage points
– Improves tooling
– qmake only in Qt 5.15, CMake 

support in Qt 6
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Towards a better QML
● QML 2 has had a great run
● Still lots of room for improvement for big-scale (desktop) applications
● Lessons learned from QML 2:

– Precompile as much as possible
– JavaScript is fun, until it isn’t
– More build system / tooling support
– Do more static analysis
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Coming soon (6.1/6.2): QML 3
● JavaScript engine optional 
● More static typing
● QML compiled to C++ code

– By exploiting the new property system, new meta object, etc.
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Qt Quick
● API of elements is mostly unchanged
● Unified 2D/3D scenegraph

– Tighter integration for 3D content
● Rendering happens exclusively through RHI

– Targeting OpenGL (ES), Direct3D, Vulkan, Metal
– Software rendering still available
– Desktop applications mixing raw 3D and Qt Quick possibly affected

● Planned in Qt 6.x: C++ API for Qt Quick elements
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Qt Quick Controls 2: Native Desktop Style
● Not every Qt Quick application 

wants a custom look and feel
● In Qt 6.0: native desktop style 

for Qt Quick Controls 2



3D Graphics
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Qt and 3D graphics: a bit of history
● OpenGL, OpenGL, OpenGL

– As a cross-platform toolkit, Qt has always had deep OpenGL integration
– OpenGL widgets, QOpenGLContext, OpenGL helper classes, etc.

● Qt 5 bet on OpenGL (ES) as the universal enabler API for 3D
– OpenGL first-class citizen in Qt APIs
– QtGui featuring OpenGL classes
– QtWidgets for OpenGL content
– Qt Quick uses OpenGL for rendering

Qt Gui

Qt Widgets Qt Quick

OpenGL helpers

Qt 3D
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3D graphics today
● The OpenGL bet didn’t quite pay off
● Today’s world: multiple competing 3D standards

– OpenGL
– Vulkan
– Metal
– Direct3D

● Some support for Vulkan and Metal already available in Qt 5
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Qt 6 strategy for 3D graphics
● Move everything but the core 

3D classes out of QtGui, into 
their own libraries
– Lots of OpenGL goodies still 

available
● Introduce RHI as foundational 

3D API for Qt itself
– Qt Quick, Qt 3D, etc. using it in 6.0

Qt Gui

OpenGLVulkan MetalD3D

Qt Rendering Hardware Interface

Qt WidgetsQt Quick QtOpenGL
Helpers

Qt OpenGL Widgets

Qt 3D
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3D: summary
● Qt RHI initially (mostly) private API, for Qt’s own libraries

– Qt Quick, Qt Quick 3D, Qt 3D, etc.
● OpenGL enablers and higher-level classes are still available to 

applications
– Some simply got moved; minor changes required

● New: low-level enablers for other 3D APIs, available in Qt Gui
● Application mixing raw 3D with Qt-rendered 3D may need some 

changes



How to upgrade to Qt 6?
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The way towards Qt 6
● Recognize the success of Qt 5

– Qt 5.15 has Long Term Support (3 years)
● Minimize disruptions for end-users towards Qt 6
● Not every Qt 5 module will be ready for 6.0

– Notable desktop-related modules missing: 
QtWebEngine, QtVirtualKeyboard, QtMultimedia

– Some of those may move to the Marketplace
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Planning the upgrade
● Upgrade your software to Qt 5.15 LTS
● Upgrade your toolchain
● Enable the deprecation warnings in Qt, fix them all
● Use docs, changelogs, etc. to identify pain areas (“Important Behavior 

Changes”)
– Have a plan to address them before getting your hands dirty
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Migrate, not upgrade
● Upgrading towards Qt 6 is still a migration

– Therefore: avoid adding features, doing refactorings, etc. while porting
– If needed, port to Qt 5.15 features before porting to Qt 6

● In theory, have enough #ifdefs and/or build system support to 
keep your code work on both 5.15 and 6.x

● Some unsupported features moved to Qt5Compat module
– Use it (temporarily!) to ease the transition



Thank you!
Questions?
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