Modern Mobile and Desktop Applications

Let's look at some popular apps on different platforms:

= Deskiog — Lacal

E: m = |-

& -

Fooawz Dikar
Pabiski, e H 354 T

@ “msa Iruder Ty

Sridap, Erphrales: B, 1Y

ﬂ ‘sncow indder Avagram

iy iy 11

A eccanineddr g

& Wi bas an Lhe Beach

Ladly Shidesi

T 1)

0 oot

D SR]

ﬂ'ﬂl'\c'-ﬂ. ek Frgren

S e L b s,

Tow Huvesll

Pl 1] weirs oy DRt S, 10 i Lo By i o

Ao Tusna Lo

Evear: wavng in 13 sl Atwad
o Ml W,
Ttz trcan 4000 P e 30 PRA by

Toach i imar v b i il v 0
FHarry Baces

b vt dokey kel o o deary S b
e

Hiew

e (paiTi ra the Danch 3 vas b skt

brig orn. Sy ol ke e 2 enirwimn i e eclid e b

[P B o o G
P — T
[Ty A48 Khssting blamss i
1= .
Qrgerinllors | |

Pl v d i3

$ 603 G&-8

Her» M DOBDIEEPOORECE]

* Apps that are not content-creation centric (think of a CAD
software, an office suite) tend to look simpler, more spaced out,
design informed from mobile

* As well (and also informed from mobile) they have a lot of
smooth animations, graphical effects that require a widget
system that can provide efficient hardware accelerated painting

* MacOS and Windows offer some very “flashy” widget AP| now,
as well more and more apps now are built with Electron

* QWidget evolved through decades of polish, adressing
many corner cases, makiing it possible to create an
application very powerful.

* Looking through the opensource desktop apps that use
Qwidgets you can find many productivity applications that
are very powerful and complex (Krita, Freecad, OBS,
QtCreator, Kdevelop, Kuesa, KDEnlive etc)

* As well as countless commercial applications

* However, its evolution almost stopped in the Qt5 lifecycle, is considered
“done” and works well, but it's really showing its age.

 All the painting is still done mostly by software, so CPU intensive (same
thing for animations)

* Every widget clips its contents (can’t even do a dropshadow without
cheating in several ways)

* Animations are possible, but all manually with C++ api.

* It’s kinda “hostile” to designers, need better design tooling and we have
to tell them too many times “we can’t really do that”.

* Draws everything on an hardware accelerated
scene graph

* Very easy to do user interfaces that look
gorgeous and animate smoothly

* Very intuitive declarative language to create the
Ul

Unfortunately wasn’t a smooth evolution of QWidget but starting from a blank slate
It lacks many things taken for granted especially for desktop apps

Treeviews for complex models (Views in general are not very good)

Drag and drop support is still sub par

C++APl is very limited (all primitive elements should be public C++ api, really)

In QtQuickControls2 all the Popup types are not actual windows, which feels very
odd on a desktop app, especially context menus and menubars

It trades fast drawing and smooth animations for generally slower startup times and
bigger memory footprint

* Kirigami was born at first as a QML framework for mobile
Applications (Plasma Mobile and Android) but since
convergence was a goal from day 1 we did put a lot of attention
for the desktop as well. It is now a Tierl KDE framework

* | would recommend it for “light” applications, such as chat apps,
file managers, small utilities

* As with QML in general, may be still not “quite enough” for huge
content-creation oriented applications.

* It gives high level components which make easier to write an
application that conforms to a certain design and HIG without too
much code

* All components in Kirigami are designed to work on both desktop
and mobile, even changing radically their look and behavior if

necessary

* |t gives also some less “high level” components that are
expected, but not in QtQuickControls2 (and maybe outside its

scope)

FormLayout
lcon

“Cards” and shadowed/rouded rectangles or
Images

Standard About Page
“action” based toolbars

Example code

Kirigami.Applicationwindow {
id: root
// Swipe-in drawer on mobile, normal navigation sidebar on desktop
globalDrawer: Kirigami.GlobalDrawer {
title: "Hello App"
titleIcon: "applications-graphics"
actions: [
Kirigami.Action {
text: "View"
iconName: "view-list-icons"
// Actions can be nested
Kirigami.Action {

text: "action 1"
1
Kirigami.Action {
text: "action 2"
1
Kirigami.Action {
text: "action 3"
¥
i
Kirigami.Action {
text: "action 3"
i
Kirigami.Action {
text: "action 4"
3

]

// Not visible on desktop

contextDrawer: Kirigami.ContextDrawer {
id: contextDrawer

}

pageStack.initialPage: mainPageComponent
Component {
id: mainPageComponent
Kirigami.ScrollablePage {
title: "Hello"
// Toolbar for those actions
actions {
main: Kirigami.Action {
icon.name: "go-home"
text: "action 3"

contextualActions: [
Kirigami.Action {
text: "action 1"
}

Kirigami.Action {
text: "action 2"

3
1
}
ListView {
) e

automatically generated

Hello App Hello
0

Search

asic app

EE View >

action 3

action 4

N 2 gmlscene v~ D 6
. 7
Search... Hello fa} action3 | action1 »~ action2
s 4 8
Eg View > 0 action 3 I 7
| z = 0
action 4 —
3
4 Hello
5 0
& 1
] ER
] 3
]

=y
]
w

=y
-
o

-
%]
~

@

Actions

action 1

D—H S

The base application paradigm in
Kirigami.Application is based on drill down of
pages

Of course not mandaroty:
Kirigami.ApplicationWindow vs
Kirigami.AbstractApplicationWindow

Property pageRow of ApplicationWindow

pageStack.initialPage:
[firstPageComponent,
secondPageComponent]

Can be used anywhere with the ColumnView
component (or specialization PageRow
oriented to push/pop stack of Pages)

Hello >

o o™ ~ o 1 IS w] -

-
o

=] [=-] -~ =] o £ w =] - o

> Main

Page contains an ActionToolbar disaplayed only on

desktop
Can be created also standalone

It's a list of Actions, the representation is decided by the

platform

Can be overridden via the displayComponent property

of Kirigami.Action with an arbitrary component.

Basic Actions and Alignment

|57 alignLeft Z Align Center 3| Align Right
Display Hints
§B ® Keepvisible ! HidechildIndicator

Custom Display Component
~+ Add IconOnly Hint

All Custom Components and Layouts

— Remove IconOnly Hint

FormLayout

Kirigami.FormLayout {
id: layout
Layout.fillwidth: true

twinFormLayouts: layout2
TextField { .
Kirigami.FormData.label: "Label:" LabEL

}
TextField {

}

TextField {
Kirigami.FormData.label:"Lo&nger label:" LcngerlabeP

) n H

Kirigami.Separator {
Kirigami.FormData.isSection: true

‘%’extField { Another label:
Kirigami.FormData.label: "Another label:"

ColumnLayout { (!} Qne
k?ﬁ;;;ﬁi?ﬁigagétz.label: "Labe} for radios:" (:> Two
g;giggrﬂazgr?mta.buddyFor: thirdRadio Label for radios: O Three

id: firstRadio
checked: true
text: "One"

RadioButton {
text: "Two"

RadioButton {
id: thirdRadio
text: "Three"

 Many KDE frameworks are starting to get QML
bindings, which together can contribute to have a more
featureful desktop app

* For instance KltemModels with which gives us models
ke a gml-binded sort and filter model,
KDescendantProxyModel to flat out trees,
KConcatenateRowsProxyModel to concatenate multiple
models and so on

QML doesn’'t have a TreeView
ListViews inside ListViews would be super inefficient

X # gmiscene

“There is no problem that can’t be solved with a sufficient high o
number of proxy models” g

b ‘ CPU1
KDescendantProxyModel is a proxy present in KDE frameworks L eemia
since a long time: it flattens out tree models to have only one level B s
Has been added the possibility to “collapse” nodes (the proxy will e

B3 cpu 1 wait Load (3)
> P cpuz
> P9 crus
> 1 crus
>
>

emit rowsRemoved instead)

If the model loads completely collapsed, the model can be lazy
loading as intended: a KDirModel can be loaded on “/” and subfolders

P tGroupi cru

D Interrupts

will be actually listed only when the corresponding node expands —

import
import
import
import
import
import

QtQuick 2.6

QtQuick.Controls 2.2 as QQcC2

org.kde.kirigami 2.13 as Kirigami
org.kde.kitemmodels 1.0
org.kde.ksysguard.sensors 1.0 as Sensors
org.kde.kirigamiaddons.treeview 1.0 as TreeView

QQC2.scrollview {

id:

root

width: 500
height: 500
TreeView.TreeListView {

id: view

clip: true

model: Sensors.SensorTreeModel {
id: allSensorsTreeModel

by

delegate: TreeView.BasicTreeItem {
id: delegate
label: model.display
icon: "inode-directory"

X # gmiscene A -]
> P acet
~ P37 cpuLoad
>] context switches
v B crui
~ CPU 1 (%)
CPU 1 Clock Frequency (MHz)
CPU 1 Idle Load (%)
CPU 1 Nice Load (%)
CPU 1 System Load (%)

CPU 1 User Load (%)

(I A

CPU 1 Wait Load (%)
> P cruz

> P9 crus

> 1 crus

> P17 1Groupicru
>

D Interrupts

* Outside of Kirigami, qgc2-desktop-style

* It's a QtQuickControls2 style, with the Qstyle painting
code forked from QtQuickcontrolsl

* Unfortunately needs Qapplication (there is a widget-less
gstyle in Qt6, maybe will be useful)

* Gives a good consistency with Qwidget apps
* |ntegrates some KcolorScheme support

* Basic components should have a public C++ API

* Popups are not windows:

- A style could reimplement a QObject with the Popup api, which then would instantiate the
contents in own QQuickWindows

— Can cause incompatibilities on new revisions: Qt5 is frozen, but would need a proper, possibly
upstream solution for Qt6

— Or the style could use upstream Popup, but surreptously reparent the contentitem and
background to a Window

- Need to be careful on Wayland as you can’t position, it would have to be a proper XdgPopup,
for relative positioning to its XdgShell parent

— The menubar behavior is hard to replicate with gml: press on menu item, keep pressed, move
mouse on a popup item, release, that item gets triggered

https://kde.org/products/kirigami/

Kirigami on Telegram

https://webchat.kde.org/#/room/#kirigami:kde.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

