

Kirigami

Modern Mobile and Desktop Applications

Evolution of desktop apps design
● Let’s look at some popular apps on different platforms:

Evolution of desktop apps design
● Apps that are not content-creation centric (think of a CAD

software, an office suite) tend to look simpler, more spaced out,
design informed from mobile

● As well (and also informed from mobile) they have a lot of
smooth animations, graphical effects that require a widget
system that can provide efficient hardware accelerated painting

● MacOS and Windows offer some very “flashy” widget API now,
as well more and more apps now are built with Electron

QWidget is awesome
● QWidget evolved through decades of polish, adressing

many corner cases, makiing it possible to create an
application very powerful.

● Looking through the opensource desktop apps that use
Qwidgets you can find many productivity applications that
are very powerful and complex (Krita, Freecad, OBS,
QtCreator, Kdevelop, Kuesa, KDEnlive etc)

● As well as countless commercial applications

QWidget feels dated
● However, its evolution almost stopped in the Qt5 lifecycle, is considered

“done” and works well, but it’s really showing its age.
● All the painting is still done mostly by software, so CPU intensive (same

thing for animations)
● Every widget clips its contents (can’t even do a dropshadow without

cheating in several ways)
● Animations are possible, but all manually with C++ api.
● It’s kinda “hostile” to designers, need better design tooling and we have

to tell them too many times “we can’t really do that”.

QML is awesome
● Draws everything on an hardware accelerated

scene graph
● Very easy to do user interfaces that look

gorgeous and animate smoothly
● Very intuitive declarative language to create the

UI

QML feels incomplete
● Unfortunately wasn’t a smooth evolution of QWidget but starting from a blank slate
● It lacks many things taken for granted especially for desktop apps
● Treeviews for complex models (Views in general are not very good)
● Drag and drop support is still sub par
● C++API is very limited (all primitive elements should be public C++ api, really)
● In QtQuickControls2 all the Popup types are not actual windows, which feels very

odd on a desktop app, especially context menus and menubars
● It trades fast drawing and smooth animations for generally slower startup times and

bigger memory footprint

Kirigami: on top of QML and QQC2
● Kirigami was born at first as a QML framework for mobile

Applications (Plasma Mobile and Android) but since
convergence was a goal from day 1 we did put a lot of attention
for the desktop as well. It is now a Tier1 KDE framework

● I would recommend it for “light” applications, such as chat apps,
file managers, small utilities

● As with QML in general, may be still not “quite enough” for huge
 content-creation oriented applications.

Kirigami is about consistence
● It gives high level components which make easier to write an

application that conforms to a certain design and HIG without too
much code

● All components in Kirigami are designed to work on both desktop
and mobile, even changing radically their look and behavior if
necessary

● It gives also some less “high level” components that are
expected, but not in QtQuickControls2 (and maybe outside its
scope)

Some missing controls it gives
● FormLayout
● Icon
● “Cards” and shadowed/rouded rectangles or

images
● Standard About Page
● “action” based toolbars

Example code
Kirigami.ApplicationWindow {
 id: root
 // Swipe-in drawer on mobile, normal navigation sidebar on desktop
 globalDrawer: Kirigami.GlobalDrawer {
 title: "Hello App"
 titleIcon: "applications-graphics"
 actions: [
 Kirigami.Action {
 text: "View"
 iconName: "view-list-icons"

 // Actions can be nested
 Kirigami.Action {
 text: "action 1"
 }
 Kirigami.Action {
 text: "action 2"
 }
 Kirigami.Action {
 text: "action 3"
 }
 },
 Kirigami.Action {
 text: "action 3"
 },
 Kirigami.Action {
 text: "action 4"
 }
]
 }
 // Not visible on desktop
 contextDrawer: Kirigami.ContextDrawer {
 id: contextDrawer
 }
...

...
pageStack.initialPage: mainPageComponent
 Component {
 id: mainPageComponent
 Kirigami.ScrollablePage {
 title: "Hello"
 // Toolbar for those actions automatically generated
 actions {
 main: Kirigami.Action {
 icon.name: "go-home"
 text: "action 3"
 }
 contextualActions: [
 Kirigami.Action {
 text: "action 1"
 },
 Kirigami.Action {
 text: "action 2"
 }
]
 }
 ListView {
 ...
 }
 }
 }
}

Basic app

Multiple columns
● The base application paradigm in

Kirigami.Application is based on drill down of
pages

● Of course not mandaroty:
Kirigami.ApplicationWindow vs
Kirigami.AbstractApplicationWindow

● Property pageRow of ApplicationWindow
● pageStack.initialPage:
[firstPageComponent,
secondPageComponent]

● Can be used anywhere with the ColumnView
component (or specialization PageRow
oriented to push/pop stack of Pages)

Toolbars: ActionToolbar
● Page contains an ActionToolbar disaplayed only on

desktop
● Can be created also standalone
● It’s a list of Actions, the representation is decided by the

platform
● Can be overridden via the displayComponent property

of Kirigami.Action with an arbitrary component.

FormLayout
Kirigami.FormLayout {
 id: layout
 Layout.fillWidth: true
 twinFormLayouts: layout2
 TextField {
 Kirigami.FormData.label: "Label:"
 }
 TextField {
 }
 TextField {
 Kirigami.FormData.label:"Lo&nger label:"
 }
 Kirigami.Separator {
 Kirigami.FormData.isSection: true
 }
 TextField {
 Kirigami.FormData.label: "Another label:"
 }
 ColumnLayout {
 Layout.rowSpan: 3
 Kirigami.FormData.label: "Label for radios:"
 Kirigami.FormData.buddyFor: thirdRadio
 RadioButton {
 id: firstRadio
 checked: true
 text: "One"
 }
 RadioButton {
 text: "Two"
 }
 RadioButton {
 id: thirdRadio
 text: "Three"
 }
 }
}

Together with other KDE frameworks
● Many KDE frameworks are starting to get QML

bindings, which together can contribute to have a more
featureful desktop app

● For instance KItemModels with which gives us models
like a qml-binded sort and filter model,
KDescendantProxyModel to flat out trees,
KConcatenateRowsProxyModel to concatenate multiple
models and so on

Example: Tree views
● QML doesn’t have a TreeView
● ListViews inside ListViews would be super inefficient
● “There is no problem that can’t be solved with a sufficient high

number of proxy models”
● KDescendantProxyModel is a proxy present in KDE frameworks

since a long time: it flattens out tree models to have only one level
● Has been added the possibility to “collapse” nodes (the proxy will

emit rowsRemoved instead)
● If the model loads completely collapsed, the model can be lazy

loading as intended: a KDirModel can be loaded on “/” and subfolders
will be actually listed only when the corresponding node expands

Example: Tree views

import QtQuick 2.6
import QtQuick.Controls 2.2 as QQC2
import org.kde.kirigami 2.13 as Kirigami
import org.kde.kitemmodels 1.0
import org.kde.ksysguard.sensors 1.0 as Sensors
import org.kde.kirigamiaddons.treeview 1.0 as TreeView

QQC2.ScrollView {
 id: root
 width: 500
 height: 500
 TreeView.TreeListView {
 id: view
 clip: true
 model: Sensors.SensorTreeModel {
 id: allSensorsTreeModel
 }
 delegate: TreeView.BasicTreeItem {
 id: delegate
 label: model.display
 icon: "inode-directory"
 }
 }
}

Desktop Style of QML/QtQuickControls2
● Outside of Kirigami, qqc2-desktop-style
● It’s a QtQuickControls2 style, with the Qstyle painting

code forked from QtQuickcontrols1
● Unfortunately needs Qapplication (there is a widget-less

qstyle in Qt6, maybe will be useful)
● Gives a good consistency with Qwidget apps
● Integrates some KcolorScheme support

Unsolved problems and proposals
● Basic components should have a public C++ API
● Popups are not windows:

– A style could reimplement a QObject with the Popup api, which then would instantiate the
contents in own QQuickWindows

– Can cause incompatibilities on new revisions: Qt5 is frozen, but would need a proper, possibly
upstream solution for Qt6

– Or the style could use upstream Popup, but surreptously reparent the contentitem and
background to a Window

– Need to be careful on Wayland as you can’t position, it would have to be a proper XdgPopup,
for relative positioning to its XdgShell parent

– The menubar behavior is hard to replicate with qml: press on menu item, keep pressed, move
mouse on a popup item, release, that item gets triggered

Questions?

https://kde.org/products/kirigami/

Kirigami on Telegram

https://webchat.kde.org/#/room/#kirigami:kde.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

